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Goal: Understand and create models that work

when traction is lost
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Literature Survey

Stability control
e Ackermann, 1997
e Liebemann et al.
e Kiyotaka et al., 2009

Simulation-based drifting
e Ellefsen, 2012
e Jakobsen, 2011

Formal verification
e FEyisietal., 2013 (adaptive cruise
control)
e Loos & Platzer, 2011 (crossing
intersections)

Simulations don’t prove
reliability of the system!




Research Questions

. Can we make and formally verify a
reliable controller that safely drifts to the
desired range direction?

. How close can we get to the desired
direction”?




Drifting motion




Drifting motion




Drifting motion




Drifting motion




Linear + Circular Motion




Linear + Circular Motion

av-ddx = -av-sin(av-t)

iav-ddy = av-cos(av-t)
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Model Differential Equations

dyn =(pos' = vel, vel' = acc,t! = 1 circular motion on unit circle
linear motion ——

dzr' = av - ddz,dy' = av - ddy, /

ddz' = —ddy - av,ddy’ = ddzx - av & vel > 0)

angular velocity (turning rate) —

We use KeYmaera, a hybrid verification tool for
hybrid systems that supports differential dynamic
logic to model and prove our properties

Controller decision
How fast should we turn in order for dx

to land in the interval (dx,dx )?




Taylor Series Bounds

Taylor series bounds provide
provable differential invariants \
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Taylor Series Bounds

dr <1
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\ Use these bounds to find a

good angular velocity
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2. Our controller is guaranteed to drift to a direction
with within an arbitrary range (dx;, dx )

Additional Assumption: (dx,, dx ) must satisfy

1—|—4-d:z:l—|-dxl2 < 6-dxy,



Additional Assumption

1+4°da:l+dx? < 6-dxy,
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The minimum range enforced by xtower bound ratians lower bouna
. g . dx upper bound 3 radians bound on turn
this condition is reasonably small 05 1 2
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Increasing the order of the Taylor series approximation relaxes this constraint,

feasible up to order 8, due to closed form solutions for degree 4 polynomials




Conclusions

1. Can we make and formally verify a controller that drifts safely to the
desired direction?

2. How close can we get to the desired direction?



Conclusions

1. Can we make and formally verify a controller that drifts safely to the

desired direction?

v

Formally verified controller that stays on the road and drifts to
within the target range of direction

2. How close can we get to the desired direction?




Conclusions

1. Can we make and formally verify a controller that drifts safely to the

desired direction?

Formally verified controller that stays on the road and drifts to
within the target range of direction

2. How close can we get to the desired direction?

Using a 4th order Taylor approximation our controller can get
reasonably small intervals of desired turn, with the potential to go
up to an 8th order approximation if necessary
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Future Work

Additional Variables to Planning for Unexpected Acceleration while
Closer Model Reality Loss of Traction drifting
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Questions?



